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Abstract

The theory of p-synthesis introduced in [1, 2] provides, in principle, a broadly applicable
theory for the optimal synthesis of multiloop feedback control laws that robustly meet perfor-
mance and disturbance attenuation specifications despite unknown-but-bounded nonlinearities
and parameter variations. commercial MarLaB-based software packages implementing a crude
approximation to the theory are available [3, 4], but these computer packages address the com-
plex p-synthesis problem via a somewhat flawed inplernentation of the original - K iteration
algorithm which involves the repetition of the following three operations on a suitably augmented
closed-loop system transfer function:

1. Optimize a diagonal scaling frequency response matrix (jw) for afixed control law K(s).

2. Perform an ad hoc state-space curve-fit to D(jw).

3. Use H° control to compute a control law K(s) with the diagonal scaling D(s) fixed.
The curve-fitting of Step 2 has, until now, been a major obstacle to the realization of the
original vision of a completely automated p-synthesis procedure for robust control design. ‘I’ his
talk describes new theoretical results and how they enable us to bypass the difficult and awkward
curve-fitting of Step 2. The result is the first reliable computational algorithm for u-synthesis
controller design.

I Introduction

The K ,,-synthesis theory concerns the synthesis of multi variable feedback control laws with a
robust tolerance of uncertain variations in the gains and or phases in several, possibly multi variable,
feedback loops. The term “Ky, " refers to the multivariable stability margin [5, 6]; it is the reciprocal
of the structured singular value u [7], i.e, p=1/K,,. ‘The term “synthesis’ refers to the synthesis
(i.e., automatic design) of feedback control laws. ‘1'bus, K,,-synthesis and p-synthesis concern the
automatic design of control laws with good multivariable stability margins.

The concept of multivariable stability margin has a history that goes back nearly thirty years.
‘Jbough not focusing on the issues of uncertainty or stability margins, the 1960's input-output
stability results of Sandberg [8] and Zames [9] based on conic-sectors, posit ivity and loop-gain

“Electrical Engineering-—Systems, University of Southern California, Los Angeles, CA 90089-2563; (213) 740-4455;
safonov@bode. Use. edu

! Electrical Engineering- -Systems, University of Southern California, 1.os A%aeles. CA 90089-2563
1ot Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109



o ' I INTRODUCTION

contain the key concepts and formed the basis for most modern approaches to multivariable stability
margin analysis. Without specific reference to the term ‘singular value,” the small-gain nonlinear
stability results of [8, 9] both incorporated singular value conditions of the sort now popularly used
to evaluate multivariable stability margins for linear time-invariant systems. Taking a different
tack, Rosenbrock made use of diagonal dominance conditions to evaluate the stability robustness of
multiloop feedback control systems against simultaneous variations in the gains in several feedback
loops (see [1 O] and the references therein). The concept of multivariable stability margin was
introduced in the modern control context in [1 1, 5]. The connection between the nonlinear-stability
results of the Sand berg/ Zames type involving conic-sectors and singular values was made by Safonov
and Athans [1 1, 12, 13]. The singular value approach has been further developed by a number of
authors including, for example, [14, 6, 15, 16, 17].

A quantitative measure of multivariable stability margin, caled the ezcess stability margin Ky,,
was introduced by Safonov and Athans [6]. Safonov [18, 19] developed a technique based on Perron
eigenvalues/eigenvectors to optimize diagonal scalings so as to produce less conservative estimates
of K,, than would be possible with singular values alone. The terminology structural singular
value o was introduced by Doyle [7]; p is the reciprocal of Safonov and Athans’ multivariable
stability margin K,,. Doyle [7] showed that optimal diagonaly scaled singular values produce a
nonconservative estimate of g for systems with three complex uncertainty blocks. Algorithms for
optimal diagonal scaling and generalizations thereof were further studied by [20, 21]. Techniques
for further reducing conservativeness of g computations for systems with one or more uncertain
real gains were introduced by Doyle [22] and further developed by Fan et a [23]. Safonov and l.ee
[24] developed a multiplier formulation of these results and associated computational algorithms
based on the preliminary work of Chiang and Safonov [25].

‘I'he concept of X,,-synthesis, or p-synthesis, was introduced in the papers of Safonov (1] and
Doyle [2]. A hybrid of the H° control theory (e.g., [26, 27]) and the diagonal scaling techniques for
multi variable stability margin analysis, Xm -synthesis is potentially broadly applicable theory for the
synthesis of multiloop feedback control systems that perform robustly despite #/°°-norm bounded
uncertain gains in one or more feedback loops. ~'bough the origina vision has yet to be fully
realized, commercial computer programs implementing a crude approximation to the concept were
introduced recently [3, 4]. These computer programs address the complex K~~-synthesis problem
via the so-called 1D — F iteration in which one iteratively optimizes first a diagonal scaling frequency
response matrix /I)(jw) for a fixed control law F(s) and then optimizes the control law F(s) with
the diagonal scaling D(s) fixed. Each of the optimization are known to be convex individualy,
though the combined problem is unfortunately not, g'bus, even under ideal circumstances the D —F
iteration approach to Km-synthesis cannot be guaranteed to be globaly convergent. Nevertheless,
each iteration tends to improve a bound on performance and robustness so that it can be an effective
approach to robust control system design.

However, there is one maor problem with the approaches to Km-synthesis in [1, 2, 3, 4]. They
all require curve fitting approximations as an intermediate step after each D(jw) optimization,
in order to obtain a rational, state-space realizable diagonal scaling matrix /)(8) whose frequency
response approximates that of the D(jw) computed in the D(s) portion of the D — F iteration. It
is this curve fitting phase that is the principal obstacle to the redlization of the original vision of a
completely automated I,,-synthesis procedure for robust control design.

In this paper we show how to bypass the difficult and awkward curve fitting phase of A',,-
synthesis. We develop theory and associated conceptional algorithms, ready for computer imple
mentation, that directly compute optimal fixed order diagonal scalings /)(s) so that curve fitting is
unnecessary. Wc show that in fact it suffices to consider polynomial diagonal scaling matrices D(s)
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Figure 1: Linear fractional transformation

of afixed degree and that the resultant optimization is essentialy finite dimensional and convex.

We adopt the more general, less conservative multiplier formulation of the X,,-synthesis prob-
lem introduced by us in [25]. in this formulation the usual diagonal scalings are replaced with
complex diagonal multipliers acting on a positive-real, bilinearly-transformed system. Our mul-
tiplier formulation includes the diagonal scaling approach as a special case, but it also has the
advantage that it is capable of producing less conservative K*“ -synthesis control law designs for the
case in which some or al of the uncertain gains are known to be real. As noted in [24], the multi-
plier stability robustness conditions for systems with mixed real/complex uncertainty offer a new
perspective on, but are mathematically equivalent to, the conditions of [22, 23]. The advantages
of the new multiplier perspective in paving the w'ay for a reliable, fully-automated K,,-synthesis
procedure become clear in the present paper.

The paper is organized as follows. In section 111 we describe our multiplier formulation of the
K,,-synthesis problem. In section 1V we show that, in seeking fixed order rational diagona multi-
pliers, we can without loss of generality restrict our attention to fixed degree diagonal polynomial
multipliers. In section V we present our main theoretical results which characterize fixed order mul-
tiplier optimization as the equivalent of an m-form numerical range optimization similar to that
considered by [21] --- a problem which is smooth, convex and readily solved via iterative numerical
algorithms. One such algorithm is is given in Section V]. Conclusions are in Section VII.

IT1 Notation

We employ the notation in Table |. Additionally, we use the notation 1ft{f( /4, #%) to refer to the
linear fractional transformation resulting from the interconnection of two systems as shown in Figure
1. Note that in general, both systems £, and P, are two port systems, but that the linear fractional
transformation is still defined if either system is a one port, i.e, if either dim(u;)=dim(y;)= O
or dim(uz) = dim(y2)= O. We refer to transfer function matrices insector[0, 00] as positive real.




‘4 I Kp-SYNTHESIS USING M ULTIPLIERS

Table I: Notation.

denotes (is defined as)

R the set of real numbers

C the set of complex numbers

Z the Set of integers

2+ the set of nonnegative integers

co(x) the closed convex hull of a set &
col(zq,...,%,) the column vector [zf,z3, ... . 2]
colizy,..n(zi)  col(z1,... Zn)

diag;_,, . n.(A;) the block diagonal matrix diag(Ai, A, ....An)
A the complex conjugate of A

AT the transpose of A

A AT, if Ais a matrix

A*(s) A*(=3)

deg(p(s)) degree of the polynomial matrix F(s)
herm(A(s)) 144 4%

asym(A(s)) ;(A - A*)

a(A) The greatest singular value of the matrix A
L2 L2(~00,00)

[ZIO]I% = J1%5, A*(jw)A(jw)dw

S the unit sphere in 12; i.e, {z € L?|)|z]j;2= 1}
H* The set of stable transfer function matrices
| A(8)|] oo The H norm, sup;,, Omaz(A(Jw))

sector[— 1, 1] The set {G(s) € H=|||G(s)llec < 1}
sector{0, co] The set {G(s) € H®|herm(G(jw)> 0Vw € R}
sectf(A(s)) sectf(A)=(1 - A1 + A)™?

111 I{,, -Synthesis using Multipliers

One of the drawbacks associated with the complex K, or p synthesis is that it treats each uncer-
tainty as being bounded by a complex disc. This can lead to conservativeness if one or more of
the uncertainties A is known to be real. In [25] we briefly introduced the idea of using generalized
Popov multipliers to formulate a new procedure that can find a robust H* controller that takes into
account the real uncertainties of the system, In this section we describe our multiplier approach to
mixed real/complex K*“,-synthesis in greater detall.

A bilinear sector transform plays an essential role in our multiplier formulation of the p-synthesis
procedure. It converts the regular H *° problem of placing the closed loop system inside sector [- 1, 1]
to an equivalent problem of placing it inside sector[O, cm]; Popov multiplier techniques are applicable
to the latter problem. Multipliers which preserve the sectoricity properties of the sector-transformed
block diagonal uncertainty matrix A =diag(A,,.. .. A,,)‘ are then chosen so as to maximize the
gamma for which the transformed closed-ioop system is in the sector[0,c0] meets the robust stability
conditions of the positive relation stability criterion [9] which states that a suflicient condition for
a negative feedback interconnection of two stable systems to be stable is that one of the systems be
positive and the other to be strictly positive. A stablelinear time-invariant system G(S) is positive




if it is positive real; it is strictly positive if for somee > 0, G(S) -- €/ is positive real.
The bilinear sector transform is defined as follows

Definition 1 Given a square transfer function matriz G(s), the bilinear sector transform of G(s)
isdefined 10 be
sectf(G(s)) = (I - GYT 4G)! (1)

From the 1/*° control perspective, one kcy property of the sector transform is that is maps the
sector[- 1, 1] onto sector[0, m].

Lemma 1 Let T = sectf(G). Then G € sector[— 1, 1] if and only if T' € sector|0, 00]
Proof: Thisis a well known fact (e.g., [28]). It may be easily proved as follows:

G € sector[~1,1] <« [[Glloo <1
& I-G*G>0
< herm((J4G)*(J- G)>0 (2)
<+ herm((J - G)I4 G)'>0
<> T € sector(0, o0)

[
Note that the relation 7' =sectf(G) can be realized via a linear fractional transformation

7(s) = ILF(SECTY, G(s)) ©)

—
SECTF .—[]_i (4)

The sector transform sectf is equal to its own Inverse; that is,
G = sectf(sectf(G)). (5)

Because it is equal to its own inverse, it follows from Lemmal that sectf aso maps sector[O, oo]
onto sector[— 1, 1]. Thus, the sector transform sectf can be used to transform H < control synthesis
problems into positive real control synthesis problems and vice versa -- see Figure 2.

Since the sector transform sectf is equal to its own inverse, the stability and robustness properties
arc unaffected by the insertion of the two sectf transformations. The transformed T and A matrices
are given by

where SICTYF denotes the matrix

7 = M(SECTF, T) = sectf(T)=(I-T)J+71)" (6)
A =MtI(A, SECTF) = - sectf(- A) =~ (T4A)(J - &)™ ()
One readily checks that A has the same diagonal structure as A, viz.,
Z\:diag([&l, .. .,Z\p) (8)
where .
A = —sectf(~A;) = ~ (I, + ATk, = Ai)7! (9)
Since by hypothesis A;€sector{--1, 1], we also have —A; € sector[—1,1)and hence by lL.emmal
- Aig sector[0, oo]. (lo)

Further, it is clear from (9) that AigR U {oo} if and only if A eR U {oco}.
The class of multipliers which have the desired property of preserving the sectoricity of the
transformed uncertainty matrix A are those in the closure of the set M defined as follows:
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Figure 2: Transformation of H * synthesis to positive-real synthesis.
Definition 2 The class M of multiplier matrices for the K*,-synthesis problem is defined to be the
set of transfer function matrices satisfying
herm(My, (jw)) >0 Vw (12)
where M(s) is of the diagonal form
M (s) = diag(m;(s)Ix,, m2(8) iy, -« ., mp(s)Ik,) (12)

and the m;(s) are non-zero scalar valued transfer functions, having no poles or zeros on the jw-azis.
with real cocficients and with the additional property that, if A;is a complez uncertainty then the

corresponding m;( jw) isreal; i.e,
Imm;(jw))= o vw, if A; is a complex uncertainty block. (13)

It is clear that if M(s) is invertible, then M(s)€ M if and only if (M(s))~te M. While in genera
the members of the class M are neither stable nor minimum-phase, we note any M(s) € M can

be factored as
M(s) = (M;(s))™" Mi(s) (14)

where My and h4,and their inverses are stable and rational. We further have the following result:

Lemma 2 Let MI(s) and M2(s) be stable transfer function matrices with stable inverses satisfying
(14) and let G(s) be a stable transfer junction matriz. Then,

herm(M(jw)G(jw)) >0 Vw (1)

if and only if
M (8)G(s)M2(s) € sector(0, 00] (16)
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Figure 3: K, -Synthesis with Multipliers

Proof:  Multiply M;(s)G(s)M, on left and right by (M;1)* and M; ! respectively. The result
follows. cl
The implication of Lemma 2 is that one need not actually compute the stable minimum phase
factors M, (s), M2(s) of M(s) in order to determine their existence; rather, it suflices verify that
some M ¢ M satisfies the frequency response condition (1 5).

The multipliers in M € M have the key property that for any admissible block diagonal matrix
A, M7 TAMT! “is inside sector[0, cm] if and only if A is inside sector[0, cm]. The classical Popov
multiplier 1-4¢s is in the class M; we therefore refer the multipliers M € A as generalized Popov
multipliers. (Of course, if wc wanted to consider nonlinear A's as did Popov, then it would be
necessary to impose other more complicated restrictions as in [29, 30] in our Definition 2 of AM.)

The multiplier formulation of the mixed real/complex uncertainty X,,-synthesis problem for-

mulation goes as follows (See Figure 3)
max -y (17)

subject to the constraints that the controller F(s)be stabilizing and
(Mz‘)_lﬁll €M
17,5, loc < 1.
in other words, we want to find the greatest real number 4 such that for some generalized Popov
multiplier M the infinity norm of the cost function T; & is less than or equal to one. For such a
controller, the corresponding + willbe a lower bound on the size of the smallest destabilizing real
uncertainties.

Our multiplier-based mixed real/complex Kn,-synthesis design procedure is summarized by the
following conceptual algorithm, essentially a straightforward adaptation to the multiplier context
of the D — F iteration of the traditional diagonal scaling approach [], 2]. The algorithm returns
the K, -syntheses controllaw Fi.s(s) along with the corresponding multiplier M., € M and
COSt Ybest == U sup,, pt(7y,u, (jw)). The algorithm involves an “M-F iteration” in which oneitera-
tively alternates between (i) fixing the multiplier M(s)and solving for an JI* optimal control law
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F(8) and (ii) fixing the controller F'(s) and optimizing the multiplier M(s)e M. The algorithm
terminates when neither (i) nor (ii) results in any further improvement in ~y.,. See Figure 3.

Algorithm 1 (Multiplier p-Synthesis)

Step 1 initialize by solving the conventional H*> optimal control problem of finding a stabilizing
H®> controller F(s) which maxzimizes the value of v for which

17101 lleo < 1-

Set Myesi(s) = My(8) = Ma(s) = I, Fyeae(8) = F(8), Yoeat = Yoldbest = ¥. (Note that, for this value
of v, T 3, 1s inside sector{~1,1] and T}, 4, is inside sector(0, 00].)

Step 2 Iteratively increase v and solve the convex optimization problem of computing an improved
M(s) € M so as to mazimize

pm = min z*(herm(M(jw)T;,q5, (jw)))z. (18)
llzl}=1

If pM > 0 sct Yoest = 1y, Miest(s) = M(s) and repeat Sep 2; otherwise, continue to ep 3.

Step 3 Compute the factorization Msest =(M3)~! M, and augment the plant as shown in Figure
3.

Step 4 Increase 7 and solve the He optimal control problem finding a stabilizing controller F(s)
which rnin im izes the cost

» T ni Ts » .
PE atabil!zin{; F(s) “ viu “°°

If pr <1 set Fpeu(8) = F(s) and repeat Step 4; otherwise continue to Step 5.
Step 5 If Yoldbest < Ybests set Yoldbest = Ybest and golo Step 2; otherwise stop.

[l
Comments:

(i) A standard “-y-iteration” binary search would be an appropriate method for iteratively ad-
justing 7 as required in Steps 2 and 4 of the foregoing conceptual algorithm.

(if) There is a. close relation between the multiplier approach to p-synthesis and the diagonal
scalings used in the traditional complex pu-synthesis. If D(s) is a stable minimum-phase
invertible diagonal matrix such that &(D7'D~!) < 1, then it may be easily shown that
M(s) = D*(s)D(s) is in the class M and satisfies herm( M (8)sectf(7'(s))) > O; in this case
one may take MI(s) = D(s) and M2(8):1)”‘(s). Moreover, if only complex uncertainties
A are present, then every multiplier M € M has the property that it is positive and rea for
al frequency jw and hence factorizable as M(s) == D*(s)I)(s) for some stable minimun~-phase
D(s). It follows that diagonal scaling conditions of complex p-synthesis may be regarded as
equivalent to our multiplier conditions; of course, when some of the uncertainties are real our
multiplier approach is more powerful (i.e., less conservative).




(iii) A subtle, but critically important problem arises in the above algorithm because the op-
timization of M(s)in Step 2 is most naturally addressed pointwise at each, leading to an
irrational frequency response representation of A (jw)whereasthe /°° Optimization in Step
4 requires finite-dimensional state-space realization for M(s).Indeed, since the order of the
H = control law F(s) that is computed in Step 4 is generically equal to one less than the order
M(8)Ty,5, M2(8), it is desirable that the order of M(s)be fixed at some reasonably small
value lest the control law F'(s)be too complicated to implement. g'bus, in Step 2 it is critical
that the multiplier optimization be subject to an order constraint. One might handle this
first ignoring the order constraint and computing the optimal M(jw) at each frequency w,
then doing a rational or polynomial curve fit to find a finite order approximation to M (jw).
This is analogous to the curve fitting that is used with the diagonal-scaling frequency re-
sponses )(jw) that arise in the conventional approach to the comnplex Ky, -synthesis problem
[1, 2,3, 4]. However, the use of such curve fitting is far from satisfactory since there is no
a priori way to assess the tradeof'between the accuracy of the curve fitand the resultant
degradation in achievable performance «. Fortunately, as we will show, the afline nature of
the multiplier optimization problem makes it practical to directly impose an order constraint
on Ms) in performing the multiplier optimization in Step 2, thereby bypassing the awkward
and difficult curve fitting step associated with the conventional approaches to K,, -synthesis.

1V Fixed-Order and Polynomial Multipliers

As we have noted, a critical step in the multiplier formulation of the Km-synthesis problem is the
computation of the optimal M (s) subject to an order constraint. Mathematically, the problem may
be formulated as follows: Given a transfer function 7°(s) and a nonnegative integer p, to find an
order p rational, biproper diagonal multiplier matrix M (s)=diag{m(s)Ix;} € M for which the
matrix herm(M(s)7'(s) is nonnegative definite. Thatis, we wish to find an M(s)€ M such that

herm(M (jw)T'(jw)) >0 Vw. (19)
Equivalently, we wish to find M(s)€ M such that
2" herm(M (jw)7'(jw))z > 0 Vw, V||z||= 1. (20)

‘I'he weak point in the conventional approach to pu-synthesis is this step. In the conventional
approach to complex I,,-synthesis [1, 2, 3, 4] one computes an optimal diagonal scaling, say
D(jw), pointwise at each frequency w. One then does an ad hoc curve fit in order to find a low-
order rational approximation D(s) to the optimal D(jw). Alas, the sensitivity of u(7},., ) to the
resultant inaccuracy in I)(s) cannot be determined a priori and there is no single good measure of
what constitutes a good approximation.

One could employ essentially the same curve fitting approach in the multiplier case, but this
would likely lead to the same sensitivity problems that beleaguer curve fitting in the diagonal scaling
approach to I .-synthesis. Indeed, the sensitivity of p(sectf(M (s)sectf(v7y, ., (S)))) to variations in
M(s)will in genera be very difficult to assess a priori. Moreover, the problem of finding a suitable
low-order rational approximation to M (s) is compounded by the constraint that the approximant
must be in M. ~'bus, it would be much preferable if curve fitting could be bypassed altogether
and instead the order constraint were explicitly imposed on the Ms) optimization of Step 2 of
Algorithm 1. As we shall show,this is easy to do in tile [multiplier framework,
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The following lemma establishes that in searching for rational multipliers satisfying (19) we may
without loss of generality confine our attention to real polynomial multipliers; i.e., elements of AM
for which the diagonal multiplier transfer functions :(s) arc of the forms

n
mi(s)=) my & if AER (21)
j=0
n - .
mi(s) = Lm,f.é, tfAie C. (22)
j=0

Lemma 3 Equation (19) is satisfied for some real rational M(s) € M if and only if there exists a
real polynomial M(s) € M for which (19) holds. Moreover, if such a rational M(s) is factored as

M(s)= g(ﬂ)N(s)whcm N(s) is a polynomial matriz and d(s) is scalar valued polynomial, then the
degree of the corresponding polynomial matriz M(S) need not be greater than the sum of the degrees
of d(s) and N(s).

Proof: First note that for any n X n invertible matrix S we have
T >0 « 8TS*> 0. (23)

Also note that any rational M(s) € M may be written as H%;;N(s).'l‘akingS:d(s)] in (23), it
follows that

herm(M7) >0 ¢ herm(MT) >0 (24)
where m(s) = d*(s) d(s)M(s)=d*N(s)e M is a diagonal polynomial matrix of degree equa to
the sum of the degrees of N(s) and d(s). O

Comments:

(i) Of course, in some situations it is preferable to work with strictly proper transfer functions
M(s) which, unlike polynomials, may be realized in state-space form. Thus, if one has com-
puted a polynomial M(s), it is always possible to determine an equivalent proper multiplier
by performing the reverse of the operations in the proof of Lemma 3. That is, one may aways
substitute for M (s) the equivalent proper multiplier

where d(s) is any scalar polynomial of degree at least half that of A(s).

(ii) Since polynomials are linear in their coefficients and Lemma 3 implies that in our search for
a fixed order M(s) we may restrict our attention to polynomials. Theimplication is that the
order-constrained multiplier optimization that one would like to solve in Step 2 of Algorithm
1 may be directly treated as a convex optimization over the coefficients of the polynomials
mi(s), (i = 1,. . .,p). That is, we may bypass the need for curve fitting without losing
convexity or otherwise complicating the problem in any significant way.

(iii) One may readily generalize l.emma 3 by substituting polynomials in functions of s for poly -
nomials in s. For example, it would also suffice to consider, say, m(s) polynomials i n
(as 4b)/(cs+ 6) where a, b, ¢, d are given scalars. Thismay have advantages when one
prefers to have M(s) be proper so as to be state-space realizable.
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V Main Results

The above results establish that the fixed order multiplier optimization may be treated by optimiz-
ing the cost (19) over the set of M(s)=diag{m.(s)I,} €M for which the S1S0 transfer functions
mi(s) arc polynomias of a fixed degree with real coeficients; that is,

deg(mi(s))
mi(s)= - mijs’, ‘f AiE€R (25)

i=0
and
ch(",L,',("))/2 )
mi(s) = 2_: mils ifA;eC (26)
i. o0

where mi; € K. Note that the polynomials (26) corresponding to complex A arc restricted to
be have even degree and to have only even powers of s; this is necessary and sufficient to ensure
that mi(jw) e R Vw for each complex A as required by Definition 2. Thusthe number, say 7+, of
coeficients 7; in the i-th multiplier mi(s) is

) A deg(mi(s)), i AeR
" { 1 4 deg(mi(s))/2, if AeC. (27)

Notice that an M (s) satisfying (25,26) is an clement of M if and only if it satisfies the condition
herm(M (jw)) >0 Vw — this is a condition of the same form as (19), except with T'(jw)=1. Since
for any two hermitian matrices A, B, it holds that diag(A, ) >0 if and only if both A >0 and
I > 0, wc have the following result.

Theorem 1 Let M be a subset of M, let I'(S) be transfer function matriz, and let
Q(s,M(s)):= herm(diag(M(s), M( (97(9)). (28)

Thenthere exists a multiplier M(s) € M satisfying (19) if and only if

p i=inf ‘1‘: 2* (jw)Q(iw, M(jw))e(jw) dw >0 (29)

0
In what follows we shall restrict our attention to a particular subset M of M.

1)efinition 3 M is the set of all polynomial M € M satisfying (25,26) hold.
0
Suppose M€ M. Defineze€ R™* as

z:= Cl  col  {mij} (30)
=1 (ri- 1)

where

w3 (31)
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‘I’bus, z€R" is a column vector whose elements are the m;;’s. Clearly, for any M € M we have
that QJ(s, M(s)) may be additively decomposed as

Q(s, zvf(s))::ffz;Qa(s) (32)

=1

where Qi(8) arc hermitian matrices that do not depend on the coeficients m;;.
We further define the function

f(z) = ; col /:: 2" (jw)Qi(jw)z(jw) dw . (33)

=1,..,nz

With this definition, the argument of equation (29) may be written equivalently as 27 f(2); that is,
1) = [ @ (0)QUo, M(iw)a(w) do. (34)

This leads to our main result, a corollary to Theorem 1 characterizing the computation of the
optimal fixed order polynomial multiplier matrices satisfying (19) in terms of a sort of numerical
range optimization problem -- a problem for which there are known and reliable solution approaches
(eg., [21, 24])

Corollary 1 (Key Result) Let M be a subset of M and let 7'(S) be transfer function matrix.
Thenthere exists a multiplier M(s) € M satisfying (19) if and only if

ofl co(f(8)) (35)

Proof: From Theorem 1, the existence of a multiplier in M satisfying (19) is equivalent to existence

of a ze R™ such that _
inf Zf(z)> 0 (36)

which is equivalent to (35). 0

V1 Algorithm and Convergence

Corollary 1 establishes that the problem of finding a polynomial M(s)e M such that (19) holds
is equivalent to the problem of determining whether or not the point O € R"* is in the convex
hull of the set f(S) € R"*. This condition may be tested via the following algorithm. Since
the condition O ¢ co(f(S))is equivalent to the existence of a hyperplane separating f(S) from O;
i.e, it is equivalent to the existence of a ze R"* such that (36) holds. Any such 2 gives us the
desired multiplier M(s) € M, z being simply the vector (30) containing the coefficients m;; of
the polynomials m(s) on the diagonal of the desired polynomial matrix M(s) € M. Keeping the
foregoing in mind, we are led to our main result, the following conceptual algorithm for a computing
amultiplier for which ( 19) holds.

Algorithm 2 (Fixed-Order Multiplier Optimization)

Step 1 initialize by choosing a point z(’)eco(f(S))and setting k=-1.Choose a small convergence
tolerance ¢ > 0.
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Step 2 Fizz=20%) and set the coefficients Mij o w(s) equal to the values determined by z. Solve
the infimization

inf / : 2* (jw)Q(s, M(s))a(jw) dw (37)

and let f*) be the minimizing value of f(x). If the infimum (37) is positive, stop M(s) is the
desired multiplier satisfying 19; otherwise continue to Sep 3.

Step 3 Compute the minimum norm element in co{ f (%), 2(*)}:

2K = (k) & min{a, 13(FK) - 29) (38)

where

(k) — ()T 5(k)
"jf(k)'.(f;z(k) )‘3-(,)“5:‘;(&)‘)' (39)

If )]z V|| < c stop; otherwise, set increment k by one and returnto Sep 2.

0

The following theorem establishes that, when €= O, Algorithm 2 is globally convergent to the
unique minimum norm element of co( f(S)).

Theorem 2 (Convergence) Suppose €= O. If there exists a multiplier M(s) € M
such that (19) holds then Algorithm 2 converges as k -—» oo to a corresponding 2 € 72'"; otherwise

it converges 10 2= 0.

Proof: The result is essentially an application of Theorem 2 of [31]. Note that the Algorithm ‘2
implicitly defines a mapping, say g : ™ — R"* which maps 2(*) into z(**1), je,

A1) = g(x (), (40)

Further, the mapping g : R™ — " maps th. com rt set co(f(S)) into itself and is contractive
in the sense that, for some continuous function ¢ : R -+ R with ¢(0) = O and ¢(¢) >0 Ve >0,

119(~)115 (1 ¢(ll2" zopell)) Hl21l (41)

where z,,, denotes the unique minimum norm element of the closed, convex, compact set co(f(S))C
R™:. It follows that a each iteration ||2(¥41)|| <||2¢¥)|| with equality holding if and only if 2(F)=
20pt and that the sequence {z(} is globally convergent to Zopt - see [31] for further details.
Further, since 2., is the minimum norm element of co(f(S)), it follows that if Zopt # 0, then
zZ,'),f(:r,)> 0Vze S and the coefficients ™i; of the corresponding multiplier are the elements of
the vector z€¢ R™+* - see (30,32). Otherwise, the unique minimumnorm element of Co(j(L$)) is
2opt = O. The result follows from Corollary 1. 8
The question remains, how can one perform the optimization over z required in Step 2 of Algorithm
27 It turns out that this is actually quite easy as a consequence of the following variant of the

Positive Real l.emma [32].

Lemma 4 Consider the transfer junction G(s)=C(Is- A)"'B4D. Suppose the matriz herm(D)-
v 1 is invertible and that the pair {A, B} is stabilizable. Then G(jw) satisfies

herm(G(jw)) > vI Vw (42)
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if and onlyif & >0 and the hamiltonian system matrix

A -BRIC - BR'pB*

C*R-'C (A - BR'C)" (43)

n=
[

where

R=D41)* --271 (44)
has no eigenvalues on the imaginary azis of the complex plane. Furthermore, if vq is the least v for
which (42) jails to hold or, equivalently, jor which (43) hasa jw-azis eigenvalue at, say, jwg then

o0
IQ]; z*(jw) herm(G(Jw) -- Yol )z (jw) dw = O (45)

and an infimizing sequence {z(M )2 is
2(jw) = zou(w — W) (46)
where {u*)1%1s any sequence in S such that |utk)(jw)|? converges to the Dime delta function
and zo is any unit vector in the nullspace of herm(vol -- G(jwo)), i.e., any vector satisfying
herm(yol - G(jwo))ze = 0. (47)
Proof: We only give a brief sketch. Clearly herm(G(jw)) >7 holds if and only if G(jw))4G(jw))* -
2y] == 7" (.97 (s) for some stable, minimum-phase T(s), i.e., if and only if G(jw)) -1 G(jw))*-2y71
has a spectra] factor 7'(s) with all its poles and zeros strictly in the left half of the complex plane

C.But, under the assumptions of the lemma, this is equivalent to the solvability of the linear
qguad ratic state-feedback optimal cent rol problem of minimi zing the cost

Y f 0 cr z
J”‘/o E “][C 1)41)&271“1:}““' (48)
for the plant
i = Az 4 Bu. (49)

and this linear quadratic state-feedback problem has a solution if and only if the corresponding
Hamiltonian system matrix has no imaginary-axis eigenvalues. Note that in our case the cost (48)
has (43) as its associated Hamiltonian system matrix. ‘I'hat o and wo exist satisfying (47) is read-
ily seen by observing that since y= 7,there is a frequency W. at which herm(G(jw)) is positive
semi-definite, but not positive definite. That the sequence {u(*)}¢2 . isinfimizing may be seen by
observing that, if z(jw) is taken to be as in (46), then (47) implies that the limiting value as & - 00
of the integral (45) is zero. D

Of course, the foregoing Lemma is only useful if the transfer function G(s)is state-spacere-
alizable in the form G(s) = C({s—A)] B+ D. Fortunately, even for polynomial multipliers an
invertible matrix S(s) can aways be chosen so that even if

M(s)G(s) (50)
does not have a state space redlization of the form required by L.emma 4, the matrix
S(S) M C(9 S”(S) (.51)

dots, Noting that for any invertible S(s), berm of (50) is positive semidefinite if and only if herm
of (51 ) is too, it suffices to apply Lemma 4 to the transformed system Sags* in order
to determine whether herm M(jw)S(jw) >0 VW. For example, in the case of polynomial M (s) and

proper G(s) onemay take 5'(s) =M !(s) to obtain a proper G(s)M~1(s).
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V1I Conclusions

The weak point of traditional approaches to K. -synthesis or p-synthesis has been the curve fitting
step used to fit frequency responses of diagonal scaling functions with approximate rational realiza-
ions. We have described a conceptual algorithm, ready for implementation on a digital computer,
which enables onc to directly compute optima] fixed-order rational diagonal scalings and, more
generaly, optimal tixcd-order multipliers for mixed real/con~plcx A’'w,-synthesis. Our main result is
Algorithm 2. The algorithm is sufficiently flexible to handle both the traditional diagona scaling
approach used for complex-uncertainty and the more general multiplier approach introduced in [25]
for mixed real/conlplex uncertainty. The algorithm reduces the problem of finding optima fixed-
order diagonal scalings and, more generally, optimal fixed-order diagonal multiplier matrices, to
the finite dimensional convex optimization problem of determining if O €co(f(S))c 7?”. We have
proved that the algorithm is globally convergent to the unique minimum norm element of co( f(S)),
that a multiplier exists if and only if this element is nonzero. Algorithm 2 is constructive in that,
whenever a multiplier exists which satisfies (19), the algorithm always produces such a multiplier in
afinite number of steps. Our results enable onc to bypass the awkward and imprecise curve-fitting
step in K,, -synthesis/ - synthesis, making the overal synthesis procedure practical and reliable.
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